A doubly relaxed minimal-norm Gauss–Newton method for underdetermined nonlinear least-squares problems
نویسندگان
چکیده
When a physical system is modeled by nonlinear function, the unknown parameters can be estimated fitting experimental observations least-squares approach. Newton's method and its variants are often used to solve problems of this type. In paper, we concerned with computation minimal-norm solution an underdetermined problem. We present Gauss-Newton type method, which relies on two relaxation ensure convergence, incorporates procedure dynamically estimate parameters, as well rank Jacobian matrix, along iterations. Numerical results presented.
منابع مشابه
Verified Bounds for Least Squares Problems and Underdetermined Linear Systems
New algorithms are presented for computing verified error bounds for least squares problems and underdetermined linear systems. In contrast to previous approaches the new methods do not rely on normal equations and are applicable to sparse matrices. Computational results demonstrate that the new methods are faster than existing ones.
متن کاملVariable projection for nonlinear least squares problems
The variable projection algorithm of Golub and Pereyra (1973) has proven to be quite valuable in the solution of nonlinear least squares problems in which a substantial number of the parameters are linear. Its advantages are efficiency and, more importantly, a better likelihood of finding a global minimizer rather than a local one. The purpose of our work is to provide a more robust implementat...
متن کاملLeast – Squares Method For Estimating Diffusion Coefficient
Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...
متن کاملLEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT
Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.
متن کاملA Negative - Norm Least Squares Method for Plates
In this paper a least squares method, using the minus one norm developed in 6] and 7], is introduced to approximate the solution of the Reissner-Mindlin plate problem with small parameter t, the thickness of the plate. The reformulation of Brezzi and Fortin is employed to prevent locking. Taking advantage of the least squares approach, we use only continuous nite elements for all the unknowns. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2022
ISSN: ['1873-5460', '0168-9274']
DOI: https://doi.org/10.1016/j.apnum.2021.09.002